Chem. Ber. 104, 1147-1154 (1971)

Eberhard Breitmaier, Wolfgang Voelter, Günther Jung und Christian Tänzer

Konfigurations-, Konformations- und Substituenteneinflüsse auf die ¹³C-chemischen Verschiebungen von Glykosiden *)

Aus dem Chemischen Institut der Universität D-7400 Tübingen

(Eingegangen am 9. Dezember 1970)

Die Impuls-*Fourier*-Transform-¹³C-NMR-Spektren von 20 Methyl- und Arylglykosiden werden diskutiert. Ihre Konfiguration und Konformation kann aus den ¹³C-chemischen Verschiebungen zugeordnet werden. Auch anomere Glykoside lassen sich auf diese Weise leicht unterscheiden.

Influences of Configuration, Conformation, and Substituents on the ${}^{13}C$ Chemical Shifts in Glycosides ${}^{*)}$

The pulse *Fourier* transform ¹³C n.m.r. spectra of 20 methyl and aryl glycosides are discussed. Configurational and conformational assignments can be made using the ¹³C chemical shifts of these compounds. Anomeric glycosides can be easily distinguished following this method.

Die Bestimmung der Konfiguration und Konformation von Glykosiden ist ein elementares Problem der Zuckerchemie. Zu seiner Lösung wurde kürzlich die ¹³C-NMR-Spektroskopie herangezogen. Die ¹³C-NMR-Spektren einiger Aldopyranosen¹⁾ und Methylglykoside²⁾ konnten vollständig zugeordnet werden. Es ergab sich unter anderem, daß die ¹³C-Signale von Pyranose-C-Atomen, die axiale Hydroxy- oder Methoxygruppen tragen, bei höherem Feld liegen als die ¹³C-Signale solcher Pyranose-C-Atome, die äquatorial mit diesen Substituenten verknüpft sind. Wir haben die Impuls-*Fourier*-Transform-(abgek. IFT-)¹³C-NMR-Spektren einiger weiterer Methylglykoside sowie zahlreicher Phenylglykoside gemessen. Dabei sollten insbesondere die Einflüsse α - oder β -glykosidischer Verknüpfung bei anomeren Glykosiden sowie von Substituenten auf die ¹³C-chemischen Verschiebungen untersucht werden. Die Meßdaten sind in Tab. 1 zusammengefaßt und werden in Abbild. 1 illustriert. Die chemischen Verschiebungen beziehen sich auf externes Tetramethylsilan. In Klammern sind die auf den Standard CS₂ umgerechneten Verschiebungen angegeben.

Charakteristisch getrennt von den Signalen der anderen Pyranose-C-Atome erscheint das ¹³C-Signal des glykosidischen Kohlenstoffatoms C-1 zwischen -100 und -107 ppm. Bei axialer Verknüpfung der OR-Gruppen (R = Methyl und subst. oder

^{*) 6.} Mitteil. über Fourier-Transform-¹³C-NMR-Spektroskopie; 5. Mitteil.: W. Voelter, G. Jung, E. Breitmaier und E. Bayer, Z. Naturforsch. 1971, im Druck.

¹⁾ D. E. Dorman und J. D. Roberts, J. Amer. chem. Soc. 92, 1355 (1970).

 ²⁾ ^{2a)} A. S. Perlin und B. Casu, Tetrahedron Letters [London] **1969**, 2921; ^{2b)} A. S. Perlin, B. Casu und H. J. Koch, Canad. J. Chem. **48**, 2596 (1970).

Tab. I.	Chemis	sche ¹	³ C-Verschi	ebungen v	on Glykop	oyranoside	n gegen ex (8-Werte ii	kternes Tei n ppm)	tramethyls	ilan (bzw. umgerechnet auf Schwefelkohlenstoff)
-pyranosid	Konfor- mation ³⁾	_	5	C-2	C-3	C.4	C-5	C-6	0CH3	Phenyl
x-Methyl- D-gluco-	C1	-	101.85 (92.15)	74.2 (119.8)	- 75.75 (118.25)	-72.15 (121.85)	73.9 (120.1)	-63.2 (130.8)	- 57.7 (136.3)	
3-Methyl- D-gluco-	C 1	7	105.8 (88.2)	75.6 (118.4)	77.5 (116.5)	72.15 (121.85)	- 77.5 (116.5)	- 63.3 (130.7)	59.7 (134.3)	
α-[<i>p</i> -Nitro- phenyl]- D-gluco-	CI	б		74.1 (119.9)	- 76.9 (117.1)	-72.5 (121.5)	-75.75 (118.25)	-63.45 (130.55)		~ 119.65; ~128.25; ~144.35; ~164.85 (74.35); (65.75); (49.65); (29.15)
β-[<i>p</i> -Nitro- phenyl]- D-gluco-	cī	4		-75.95 (118.05)	80.05 (113.95)	72.4 (121.6)	79.3 (114.7)	-63.45 (130.55)		-119.45; -128.5;144.55;165.15 (74.55); (65.5); (49.45); (28.85)
<pre> (3-[m-Nitro- phenyl]- D-gluco-</pre>	CI	ŝ	- 103.55 (90.45)	76.05 (117.95)	79.95 (114.05)	72.6 (121.4)	79.2 (114.8)	63.55 (130.45)		$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
[a-[a-Nitro- phenyl]- b-gluco-	CI	¢	103.25 (90.75)	- 75.95 (118.05)	80.05 (113.95)	72.4 (121.6)	79.5 (114.5)	63.45 (130.55)		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
3-Phenyl- D-gluco-	C 1	٢	103.05 (90.95)	75.8 (118.2)	79.5 (114.5)	72.4 (121.6)	- 79.3 (114.7)	- 63.55 (130.45)		-119.0; $-124.6;$ $-132.15;$ $-132.5;$ $-153.5;$ $(75.0);$ $(69.4);$ $(61.85);$ (40.5)
x-[p-Nitro- phenyl]- D-galakto-	C1	æ	100.75 (93.25)	75.5 (118.5)	71.2 (122.8)	-70.45 (123.55)	72.05 (121.95)	-63.0 (131.0)		-119.55; -128.15; -144.15; -165.05 (74.45); (65.85); (49.85); (28.95)
β-[<i>p</i> -Nitro- phenyl]- D-galakto-	CI	6	- 103.35 (90.65)	73.15 (120.85)	-76.05 (117.95)	-71.1 (122.9)	78.55 (1(5.45)	63,45 (130.55)		119.45;128.4;144.45;165.3 (74.55); (65.6); (49.55); (28.7)

	10	 	– 76.05 (117.95)	-71.1 (122.9)	78.65 (115.35)	-63.45 (130.55)		-113.9; (80.1);		126.2; (67.8);	- 133.55; (60.45);	173.05; (20.95);	160.65 (33.35)
11 – 104.1 (89.9)	-104.1 (89.9)	- 73.15 (120.85)	-76.25 (117.75)	- 71.1 (122.9)	78.65 (115.35)	-63.45 (130.55)		-119.95; (74.05);	124.7; (69.3);	127.5; (66.5);	137.0; (57.0);	-152.55; (41.45);	- 143.15 (50.85)
12 -104.0 (90.0)	-104.0 (90.0)	73.55 (120.45)	76.4 (117.6)	-71.3 (122.7)	-78.3 (115.7)	-63.65 (130.35)		-119.3; (74.7);	-124.9; (69.1);	132.5; (61.5);	- 160.4 (33.6)		
13 103.2 (90.8)	103.2 (90.8)	73.1 (120.9)	72.35 (121.65)	- 69.2 (124.8)	74.95 (119.05)	-63.4 (130.6)	-57.15 (136.85)						
14 – 101.5 (92.5)	101.5 (92.5)	—73.4 (120.6)	72.5 (121.5)	69.45 (124.55)	78.0 (116.0)	-63.75 (130.25)		119.55; (74.45);	-128.4; (65.6);	— 144.45; (49.55);	164.1 (29.9)		
15 -103.3	-103.3	- 74.5	- 70.9	-70.9	- 70.9	-19.15	-57.15						
(1.02)	(1.06)		-72.0	- 72.0	72.0	(00.1/1)	(00.001)						
			(121.2) - 72.8 (121.2)	72.8	-72.8								
16 -103.85 (90.15)	-103.85 (90.15)	-70.4 (123.6)	-72.65 (121.35)	69.85 (124.15)	-65.55 (128.45)	I	58.3 (135.7)						
$\begin{array}{ccc} 17 & -102.1 \\ (91.9) \end{array}$	102.1 (91.9)	-73.95 (120.05)	-75.9 (118.1)	72.0 (122.0)	63,64 (130,4)		— <i>5</i> 7.8 (136.2)						
18 – 106.55 (87.45)		-75.5 (118.5)	78.4 (115.6)	71.8 (122.2)	-67.7 (126.3)	î	- 59.7 (134.3)						
19 107.0 (87.0)	107.0 (87.0)	73.75 (120.25)	-75.35 (118.65)	71.15 (122.85)	-68.9 (125.1)	Anna							
20 -102.65 (91.35)	- 102.65 (91.35)	-71.7 (122.3)	-71.7 (122.3)	-70.95 (123.05)	65.35 (128.65)	I	58.1 (135.9)						

Abbild. 1. Strichdiagramm der ¹³C-Signale von Glykopyranosiden (in den Formeln bedeuten Striche ohne Substituenten OH-Gruppen)

unsubst. Phenyl) liegt das ¹³C-1-Signal um 2 bis 4.5 ppm bei höherem Feld als bei äquatorialer Verknüpfung. Bei Methylglykosiden ist dieser Unterschied mit 4 bis 4.5 ppm etwas größer im Vergleich zu Phenylglykosiden mit etwa 2.5 ppm. Beim Übergang von Methyl- zu Phenyl-glykopyranosiden beobachtet man eine Verschiebung der ¹³C-1-Signale nach höherem Feld, die bei äquatorial mit C-1 verknüpften O-Arylgruppen deutlich größer ist (Abbild. 1). Die Elektronendichte an C-1 scheint daher bei äquatorialer Verknüpfung mit O-Arylgruppen stärker zuzunehmen (größere magnetische Abschirmung) als bei axialer Verknüpfung.

Die Zuordnung der Signale von C-2, C-3, C-4 und C-5 ergibt sich, wenn man berücksichtigt, daß sich der Konfigurationswechsel an C-1 bei dem Übergang vom α - zum β -Anomeren infolge der besonders starken 1.3-diaxialen Wechselwirkung auf die chem. Verschiebung von C-3 und C-5 stark, auf die von C-2 jedoch schwächerauswirkt.

Für C-4 ist dieser Einfluß wegen des großen Abstandes von C-1 am geringsten. Tatsächlich erscheint das ¹³C-4-Signal der gemessenen Glykoside in dem engen Bereich zwischen –69.2 und –72.6 ppm. Diese Verschiebung ist für beide Anomeren eines jeden Glykosids nahezu gleich und zeigt fast keine Abhängigkeit von der Art des Glykosids (vgl. Methyl-, *p*-, *m*-, *o*-Nitro-phenyl- sowie Phenyl-glucopyranoside in Tab. 1). Jedoch beobachtet man hier, daß eine axiale Hydroxygruppe an C-4 eine Verschiebung des ¹³C-4-Signals um 1–2 ppm nach höherem Feld zur Folge hat (vgl. Xylo- und Arabinopyranoside sowie Gluco- und Galaktopyranoside in Tab. 1) und Abbild. 1). Die ¹³C-Signale von C-2 und C-3 liegen zwischen –70 und –80 ppm. Im selben Bereich erscheint auch das ¹³C-Signal der tertiären C-5-Atome von Hexosen. Ist C-5 dagegen sekundär, wie in den gemessenen Pentosiden, so erscheint das zugehörige ¹³C-Signal bei höherem Feld, nämlich zwischen –63.5 und –69 ppm.

In dem sehr engen Bereich zwischen -63 und -63.5 ppm erscheint das ¹³C-6-Signal der Hydroxymethylgruppe von Hexosen. Es ist wie das ¹³C-4-Signal unabhängig von der Konfiguration an C-1 und von der Art des Glykosids (Tab. 1). Es fällt, ähnlich wie das ¹³C-1-Signal, nicht in den Bereich anderer ¹³C-Signale des Pyranoseringes. 1st C-6 Teil einer Methylgruppe, wie in 6-Desoxy-zuckern, z. B. α -L-Rhamnopyranosid, so liegt sein ¹³C-Signal bei sehr hohem Feld, z. B. bei --19.5 ppm für **15**.

Schließlich hängen auch die zwischen -57 und -60 ppm erscheinenden ¹³C-Signale der Methoxygruppen in Methylglykopyranosiden charakteristisch von der Konfiguration an C-1 ab: Axiale Methoxygruppen an C-1 liegen im ¹³C-NMR-Spektrum um 2 bis 3 ppm bei höherem Feld als äquatoriale. Ein entsprechendes Verhalten für das mit C-1 verknüpfte O-C_{Aryl}-Atom von Phenylglykosiden konnte in dieser charakteristischen Form nicht erkannt werden. Die ¹³C-Signale der O-Arylgruppen an C-1 erscheinen deutlich getrennt von denen des Pyranosegerüstes zwischen ca. -110 und -175 ppm. Eine Abhängigkeit dieser Signale von der Konfiguration der Glykopyranoside, insbesondere an C-1, konnte im Rahmen der Meßgenauigkeit nicht erkannt werden. Daher gehen wir im Rahmen dieser Untersuchungen über Konfiguration und Konformation von Zuckern nicht näher auf die Diskussion dieses Spektrenteils ein.

Im übrigen kann sich aus der ¹³C-chemischen Verschiebung, insbesondere von C-1, auch die Konformation eines Glykosids ergeben. Lägen z. B. Methyl- α - und - β -D-arabinopyranosid wie Methyl- α - und - β -D-xylo- sowie -glucopyranosid in der C 1-Konformation³⁾ vor, so stünde die Methoxygruppe am glykosidischen C-1-Atom in Methyl- α -D-arabinopyranosid axial. Die ¹³C-chemische Verschiebung von C-1 in

1151

 ³⁾ S. J. Angyal, Angew. Chem. 81, 172 (1969); Angew. Chem. internat. Edit. 8, 157 (1969).
 Chemische Berichte Jahrg. 104 73

diesen Anomeren spricht dagegen für eine äquatoriale Methoxygruppe (Tab. 1, Abbild. 1), was nur bei Vorliegen der Arabinopyranoside in der 1 C-Konformation verständlich ist. Nach *Reeves* wirkt sich die in Abbild. 2 dargestellte Konfiguration der mit C-1 und C-2 verbundenen Sauerstoffatome ungünstig auf die Stabilität des Moleküls aus (*Reeves*-Effekt⁴⁾). Eine solche Konfiguration liegt in der C 1-Konforma-

Nr. (vgl. Tab. 1)	Lit.	$[\alpha]_{D}^{20}$ (Lit.)	Schmp. (Lit.)	$[\alpha]_{D}^{20}$ (gef.)	Schmp. (gef.)
1	7)	+-157.6°	$163-166^{\circ}$	+154.0°	164—167°
2	8)	-32.0°	108°	-33.6°	106 108°
3	9)	$+222.0^{\circ}$	212-216°	$+216.5^{\circ}$	210-215°
4	10)	— 79.6° (CH ₃ OH)	165°	−101.0° (H ₂ O)	164—165°
5	11)	87.0 °	166°	89.5°	167168°
6	12)	-116.0°	168-169°	-101.2°	167—168°
7	13)	71.0°	172-173°	-71.6°	$165 - 167^{\circ}$
8	14)	$+233.0^{\circ}$	146—149° oder 183.5°	+238.8°	166—169°
9	10)	-85.0°	$181 - 182^{\circ}$	85.6°	178179°
10	11)	-67.6°	$178 - 179^{\circ}$	67.5°	174—176°
11	15)		$193-194^\circ$	64.7°	194195°
12	16)	39.8 °	$140 - 142^{\circ}$	40.1°	153 - 154°
13	17)	$+79.2^{\circ}$	190191 °	$+78.9^{\circ}$	191 — 192°
14	18)	$+144.5^{\circ}$	183 - 184°	+155.2°	174 175°
15	7)	-62.5°	$108 - 109^{\circ}$	59.2°	$107 - 108^{\circ}$
16	5)	105.0°	$83-84^{\circ}$	93.5°	70 – 71°
17	7)	$+153.2^{\circ}$	90 – 92°	+157.9°	$89-90^{\circ}$
18	7)	-65.8°	$156 - 157^{\circ}$	64.9°	$156 - 157^{\circ}$
19	19)	-17.3°	131°	17.4°	130131°
20	20)	-241.1°	168°	-240.6°	167–168°

Tab. 2. Schmelzpunkte und Drehwerte*) der gemessenen Glykopyranoside

*) Die Drehwerte wurden von uns bei c = 1 in bidest. Wasser gemessen. Die der Literatur entnommenen Werte wurden z.T. für andere Konzentrationen und Temperaturen $(16-23^{\circ})$ angegeben.

4) R. B. Kelly, Canad. J. Chem. 35, 149 (1957).

⁵⁾ E. L. Jackson und C. S. Hudson, J. Amer. chem. Soc. 63, 1229 (1941).

- ⁶⁾ W. Voelter, G. Kuhfittig, G. Schneider und E. Bayer, Liebigs Ann. Chem. 734, 126 (1970).
- 7) E. Fischer, Ber. dtsch. chem. Ges. 28, 1145 (1895).
- ⁸⁾ P. Brigl und H. Keppler, Ber. dtsch. chem. Ges. 59, 1588 (1926).
- 9) W. F. Goebel, F. H. Babers und O. T. Avery, J. exp. Medicine 55, 761 (1932).
- 10) W. F. Goebel und O. T. Avery, J. exp. Medicine 50, 521 (1929).
- 11) Z. Csusos, G. Deak und M. Haraszthy-Papp, Acta chim. Acad. Sci. hung. 64, 690 (1942).
- ¹²⁾ E. M. Montgomery, N. K. Richtmyer und C. S. Hudson, J. Amer. chem. Soc. **64**, 690 (1942).
- 13) E. Fischer und E. F. Armstrong, Ber. dtsch. chem. Ges. 34, 2885 (1901).
- ¹⁴⁾ B. Helferich und K. H. Jung, Liebigs Ann. Chem. 595, 242 (1955).
- 15) M. Seidman und K. P. Link, J. Amer. chem. Soc. 72, 4324 (1950).
- ¹⁶⁾ E. M. Montgomery, N. K. Richtmyer und C. S. Hudson, J. Amer. chem. Soc. 65, 1848 (1943).
- 17) E. Fischer und L. Beensch, Ber. dtsch. chem. Ges. 29, 2927 (1896).
- ¹⁸⁾ M. A. Jermyn, Australian J. Chem. 8, 403 (1955).
- ¹⁹⁾ C. S. Hudson, J. Amer. chem. Soc. 47, 265 (1925).
- ²⁰⁾ G. McOwan, J. chem. Soc. [London] 1926, 1747.

Abbild. 2. Teil des Pyranoseringes ($O-C_1-C_2-C_3-$) zur Demonstration des Reeves-Effektes

tion des β -Methyl-D-arabinopyranosids vor, nicht dagegen in der 1 C-Konformation. Dies ist im Einklang mit unseren ¹³C-NMR-Befunden. Die Konformation eines Zuckers kann somit bei bekannter Konfiguration aus der ¹³C-chemischen Verschiebung insbesondere des glykosidischen C-Atoms bestimmt werden.

Wir danken der Deutschen Forschungsgemeinschaft für Sachbeihilfen. Den Herren Dr. V. Formacek und T. Keller (Firma Bruker Physik AG, Karlsruhe-Forchheim) danken wir für ihre Mitarbeit bei der Aufnahme der ¹³C-NMR-Spektren. Fräulein I. Fauth danken wir für ihre Hilfe bei der Darstellung der Glykoside sowie für die Messung der Drehwerte.

Beschreibung der Versuche

IFT-13C-NMR-Spektren: Zu den Messungen wurde ein Bruker HFX-90-15"-Multikern-NMR-Spektrometer verwendet. Die ¹H-breitbandentkoppelten 22.63 MHz-IFT-¹³C-NMR-Spektren wurden bei 30° (Insert-Innentemperatur) unter Akkumulation von 256 Impulsinterferogrammen bei einer Impulsbreite von 5 µsek und einem Impulsintervall von 0.4 sek durch *Fourier*-Transformation des akkumulierten Interferogramms mit einem PDP-8-L-Rechner

Abbild. 3. Impuls-Fourier-Transform-¹³C-NMR-Spektrum von α- und β-Methyl-D-arabinopyranosid (19 und 20)

erhalten. Die chemischen Verschiebungen wurden aus den digital abgelesenen Kanaldifferenzen der Signale zum Standard (externes Tetramethylsilan) maschinell berechnet. Als Proben dienten Lösungen von 0.5 g Methylglykosid in 1.5 ccm bidest. Wasser bzw. 0.5 g Arylglykosid in 1.5 ccm Dimethylsulfoxid. Stabilisiert wurde auf ¹⁹F des Hexafluorbenzols, das zusammen mit 50% Tetramethylsilan in einer Kapillare als externe Lock- und Standardlösung verwendet wurde. Wie man der Abbild. 3 entnimmt, erzielt man unter diesen Bedingungen ein Signal-Rausch-Verhältnis von mindestens 50:1.

Die zur Messung verwendeten *Glykoside* 1-20 wurden nach den in Tab. 2 zitierten Arbeiten dargestellt. β -Methyl-D-ribopyranosid (16) enthielt selbst nach dreimaliger Destillation noch 5% Ribose, wie sich durch Circulardichroismus nachweisen ließ⁶). Tab. 2 zeigt die von uns gemessenen Schmelzpunkte und Drehwerte.

[440/70]